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Abstract—Brain-computer interfaces are devices that enable
direct communication between the brain and a computer, al-
lowing users to control various applications with their brain
activity. An electroencephalogram, a device that can measure
brain activity through electrodes attached to the scalp, can
be used to build a non-invasive (not requiring surgery) brain-
computer interface. This technology has a large potential impact
for accessibility devices for those with motor impairments and
for immersive gaming experience. The goal of this project was
to build a non-invasive brain-computer interface binary game
controller. To achieve this, we built and tested multiple models,
including a statistical classifier, a convolutional neural network,
and a singular vector machine. The statistical classifier achieved
81.36% accuracy, the neural network had 92.84% but struggled
to generalize, and the singular vector machine achieved 94.43%.
Finally, the models were integrated as the control mechanism for
a custom version of the game Flappy Bird.

I. INTRODUCTION

A. Motivation

Brain-computer interfaces (BCIs) are devices that facilitate
direct communication between the brain and a computer,
enabling the control of computer inputs (mouse or keyboard
inputs), robots, or prosthetics. Neurotechnology and BCIs have
gained increasing attention in recent years, jointly due to the
popular public demos of Neuralink [1] and the ever decreasing
cost of entry for non-invasive research. While invasive BCIs
promise much higher acuity and wider applications, non-
invasive BCIs such as those based on the electroencephalo-
gram (EEG) can provide a reliable and affordable way to
measure brain activity build BCI systems. EEG BCIs are
especially attractive for building consumer technology, as they
are much cheaper, safer, and there is no procedure needed to
use one.

The consumer market for BCIs is currently relatively un-
tapped, especially when one considers the potential for con-
sumer applications namely with virtual reality (VR). There
were approximately 50 million VR devices sold globally be-
tween 2014-2021 with 16.44 million of those sales in America
alone [2] [3]. The market was valued at $21.83B in 2021,
and is expected to grow by 15% from 2022-2030 [4]. VR
promises a more immersive media/gaming experience, but the
immersion is limited by the controls. EEG BCIs offer a unique
solution to this problem, as the electrodes can be built directly

into a headset and the ability to control the device with your
thoughts is about as immersive as you can get.

The other major application of non-invasive BCIs is for
people who have impairments in their motor function due to
various conditions. Many of such people may not want or
be able to undergo a surgical implantation of a BCI device,
which limits their options for interacting with computers and
the world around them. Non-invasive BCIs offer a more
convenient and comfortable alternative that can enable them
to communicate and control devices using only their brain
activity.

B. Related Works

The notion of building EEG BCIs has been around for a
while. Though consumer devices are currently uncommon,
there are a handful of companies working on these devices.
One such company, Interaxon Inc., recently launched a soft-
ware development kit and EEG headband explicitly designed
for use in VR systems [5]. Outside of VR and consumer
devices, much work has been done in research settings for
BCI game controller. Liao et al. [6] presented a BCI game con-
troller using novel sensors in 2012. Advancements have also
been made in improving the classification models powering
BCIs. One of the most prevalent of such models is EEGNet
[7], a convolutional neural network (CNN) architecture that
manages competitive performance with significantly fewer pa-
rameters than comparable models. Another interesting model
is EEG-Conformer [8], a convolutional transformer network
that combines spatial-temporal convolutions, pooling, and self-
attention to effectively classify EEG data.

C. Problem Definition

The combined human aid and consumer market potential for
non-invasive BCIs is massive, yet these kinds of devices are
still rare in the real world. We set out to build a robust simple
game controller using a relatively cheap EEG, OpenBCI’s
Ultracortex Mark IV with the 8-channel Cyton board. Using
this device, we aimed to build a binary controller and applied
it to play a custom version of the game Flappy Bird.

Most effective research and production EEG BCI systems
use much more expensive hardware, including more electrodes
and electrodes of higher quality reducing the noise in the brain



signals. Due to budget constraints we were limited to cheaper
hardware with lower fidelity signal. This issue leads to three
guiding principles in building a BCI system: extensive signal
processing to compensate for the noisy signal, using signals
that are maximally reflected in the data as control inputs, and
a careful training process to avoid overfitting noise patterns in
the signal.

II. METHODOLOGY

A. Target Control Signal

At the onset of the project we explored multiple potential
control signals. The first attempt was to use thought signals
(i.e. thinking ”jump”), however we quickly found there simply
wasn’t enough relevant signal in the EEG readings. Simi-
larly, we experimented with motor imagery signals such as
thinking about arm movements or jumping, but again these
patterns were indiscernible in the data. Finally, we settled on
physical motor movements. We considered using arm or leg
movements, but in the joint interest of keeping the system
maximally useful for those with disabilities and having as
strong of a signal as possible, we decided to use blinking
as the control mechanism.

B. Data Collection

For both data collection and control integration, we built
a custom version of Flappy Bird written using PyGame. The
EEG data stream was integrated into the game using Brainflow,
and we built two game modes for interfacing with the device:
data collection and BCI control. In both modes the headset
is connected to and data is constantly streamed into a buffer
from the device on launch. In data collection mode, the user
plays the game using the spacebar to jump, and is instructed
to blink anytime they press space. The program then listens
for the spacebar press, and inserts a marker in the EEG data.
On exit the data is formatted and written to a csv file. In BCI
mode, the program evaluates each packet of 255 data points,
feeding the data into the model to determine whether or not
to jump.

Data is streamed at 250hz in packets of 255 readings,
including voltage readings from each of the eight EEG
electrodes, accelerometer data, timestamps, and some other
unused readings. We only used EEG readings for our models.
Importantly, readings from the EEG are scaled by a factor
given by:

4.5V

gain
× 1

(223 − 1)
,

where gain is a user-configurable value of: 1x, 2x, 4x, 6x,
8x, 12x, or 24x. For our work we used the maximum gain
(24x), and therefore had to scale data by 0.02235 microVolts.
The final term, 223 is required because the Cyton board uses
the ADS1299 chip, which is a 24-bit device, and outputs data
in two’s complement format [9].

C. Signal Processing

Signal processing was a crucial step in designing our BCI.
EEG signals are measured as by placing electrodes on the scalp
and recording the voltage differences between them (Figure
1). This raw voltage reading includes significant noise. If left
unfiltered, the noise masks nearly all the patterns a model
could use classify signals.

Fig. 1. Raw EEG data

Brain waves can be broken down by frequency (Figure
2), and motor signals dominantly reside in gamma (30hz+)
waves. Therefore, signal processing techniques are applied to
enhance the quality and extract meaningful features from the
EEG signals.

Fig. 2. Brain wave frequency ranges.

The first, and arguably most important, function applied is
the Fourier transform, which decomposes signals into a sum



Fig. 3. Fourier transformed EEG data.

of overlapping sine waves of varying frequency. In practice
we opted for numpy’s implementation of the fast Fourier
transform (FFT) for its computational efficiency. By applying
the FFT, one can identify the dominant frequencies or spectral
components of the EEG signals, which reflect the different
brain waves.

The result of applying the FFT to the raw signal is shown in
Figure 3. In the plot there are three obvious spikes of noise, the
most noticeable being the drastic spike at 60hz. This is caused
by the background of AC power, which (in Canada) is 60hz.
Also, as previously discussed, we are only concerned with
signal in a certain frequency range. To address these issues,
we apply a bandpass and a notch filter. The notch filter is a type
of band stop filter that blocks a narrow band of frequencies,
allowing all others to pass through. We applied this at 60hz
with a notch size of 3, to knock out the AC power noise. The
bandpass filter is used to filter for only the frequency range we
care about: 13hz-80hz (i.e. filtering for only gamma and beta
waves; while motor signals predominantly reside in gamma
waves, empirically we found including beta waves gave better
results). The filtered signal is shown in Figure 4.

A technique we experimented with but were unable to
utilize effectively was band power, which quantifies how
potent certain frequencies are within different ranges. Band
power can be calculated by squaring the amplitude of each
frequency component obtained by FFT. By measuring band
power, one can compare the relative strength of different
frequency bands across time or electrodes. Unfortunately, in
this motor classification task band power didn’t provide a
useful feature and only degraded the performance of our
models.

A final consideration for EEG signal processing is Nyquist
frequency, which is the minimum sampling rate required to
capture all the information in a signal without aliasing [10].
According to Nyquist theorem, one needs to sample at least

Fig. 4. Processed EEG data.

twice as fast as the maximum frequency of interest. For EEG
signals that range from 13 to 80hz, one needs to sample at least
120hz. However, since our EEG device has a higher sampling
rate of 250hz this was not an issue for our BCI design.

D. Statistical Model

Due to the proximity of the eyes and related muscles to
the brain, blinking produces a rapid voltage drop in the EEG
data, shown in (Figure 5). This led us to trying a simple
statistical classifier on the data. The classifier simply compares
the rolling average signal strength of a 60 sample window to
the average of the previous window. Because packets come in
255 sample bursts, we were able to run the classifier live with
4 windows to compare.

Fig. 5. Forehead electrode data recorded during a blink.



E. Convolutional Neural Network
The first ML model we built was a CNN based on the EEG-

Net [7] architecture (Figure 6). We simplified the architecture,
namely by reducing the convolutional layers from 2D to 1D
in order to fit our collected data. This is composed of three
convolutional layers, each with a kernel of 3 and immediately
followed by batch normalization to stabilize training and add
regularization helping the model to generalize. The second and
third convolutional layers are followed with ELU activation,
average pooling, and 25% dropout. Finally the outputs are
passed through a fully connected layer with two outputs and
softmax activation to give the prediction.

Fig. 6. CNN model architecture, based on EEGNet.

F. Singular Vector Machine
The second ML model was a support vector machine (SVM)

utilizing time series data. A rolling moving average was ap-
plied to filter out high-frequency oscillations. Using smoothed
data, the SVM was trained to identify the distinct trough shape
shown in Figure 5. Performing a binary classification on time

series data allows us to identify blinks occurring in real-time
with high accuracy.

III. RESULTS

TABLE I
PERFORMANCE METRICS OF THE CLASSIFIERS.

Model Accuracy Precision Recall F1-Score
Statistical Classifier 81.36% 76.92% 57.97% 66.12%
CNN (overfit) 92.82% 93.42% 92.82% 92.80%
SVM 94.43% 92.85% 100% 96.30%

A. Statistical Model

The simple statistical classifier performed suprisingly well.
It achieved an accuracy of 81.36%, and had very few false
positives (only 5.45% of predictions). However, it noticeably
lacked in its false negative rate at 13.18%. This high false
negative rate is reflected in the low recall score of the model
of 57.97%. In practice, this led to a relatively smooth gaming
experience where the occasional input was missed but this
was easily rectifiable by blinking again quickly. Along with
good performance, this model had the added advantages of
extremely quick prediction time and being entirely resilient
to imbalanced data. This made it by far the quickest to build
and had minimal impact on the performance (framerate) of the
game.

B. Convolutional Neural Network

The CNN model had impressively good performance on
validation data. It achieved 92.83% accuracy, and similarly
high scores for all the other performance metrics. However,
upon testing on data recorded on a different day, it was clear
this model had severely overfit to its training data. On other
datasets the model often had extremely high false negative
rates (upwards of 90%) and was unusable other than briefly
immediately after training.

C. Support Vector Machine

The SVM provided promising results across all metrics.
Accuracy, recall, and F1 scores outperformed both the CNN
and statistical classifier. The only metric in which SVM did
not score highest was precision, in which the CNN outscored
it by less than 1%. Furthermore, the model generalized well,
identifying blinks with a cross-validation accuracy of 94.43%.
Overall, the SVM provided strong results and generalization.

IV. CONCLUSION

We were successful in building an EEG BCI game con-
troller. Of the models built, the SVM performed the best and
both the SVM and statistical classifier worked as playable BCI
control algorithms in practice. The CNN did not perform well
or work in live testing due to a failure to generalize.

To effectively implement a CNN or other deep learning
models, significantly larger datasets are required. Future steps
for this project could include data collection across multiple
people, spanning the course of several months. This process



could mitigate the overfit observed in our trials and would
provide a more generalizable model.

Future steps for this project include increased control com-
plexity. Using different actions to provide several control
options to the user would provide a more ergonomic interface.
Within the scope of this EEG’s capabilities, it could be
possible to provide two control signals through winking the
right and left eyes, and possibly another movement with the
arms or legs. This three-input system may cause a decrease
in performance, but would provide the user with higher utility
when interfacing with a computer.

Many options are possible to increase the performance of
the BCI. First, using wet electrodes provides more accurate
data. When using dry electrodes, interference from the user’s
hair and skin oils adds increased noise to the signal. Wet
electrodes apply a conductive gel to the user’s skin, which
mitigates these sources of error. Secondly, using a higher
quantity of electrodes would provide more detailed data.
Tasks such as motor imagery and thought recognition are
achievable using higher resolutions EEGs, ranging from 16 to
256 electrodes [11]. Additionally, electrode locations can be
customized to provide signals from desired parts of the brain.
For example, many motor signals originate from the frontal
lobe of the brain. Re-locating electrodes to provide higher
density over the frontal cortex could provide better results
for motor movement classification. Exact electrode locations
could be chosen to meet the needs of the user and the task at
hand.

In short, the results achieved from this BCI project were
promising. The goal of controlling a single-input video game
was achieved with high consistency. Investigation into different
control signals and new EEG technology could provide a more
immersive interface for the user, and the development of this
technology will enable those with disabilities to interact with
the world in a more effective manner.
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